zymeworks

Early Research & Development Day

yme

October 20, 2022

NYSE: ZYME www.zymeworks.com

Legal Disclaimer

This presentation includes "forward-looking statements" within the meaning of the U.S. Private Securities Litigation Reform Act of 1995 and "forward-looking information" within the meaning of Canadian securities laws, or collectively, forward looking statements. Forward-looking statements include statements that may relate to our plans, objectives, goals, strategies, future events, future revenue or performance, capital expenditures, financing needs and other information that is not historical information. Forward-looking statements can often be identified by the use of terminology such as "subject to," "believe," "anticipate," "plan," "expect," "intend," "estimate," "project," "may," "will," "should," "could," "can," the negatives thereof, variations thereon and similar expressions, or by discussions of strategy. In addition, any statements or information that refer to expectations, beliefs, plans, projections, objectives, performance or other characterizations of future events or circumstances, including any underlying assumptions, are forward-looking. All forward-looking statements, including, without limitation, our examination of historical operating trends, are based upon our current expectations and various assumptions. We may not realize our expectations, and our beliefs may not prove correct. Actual results could differ materially from those described or implied by such forward-looking statements as a result of risks and uncertainties, including those described in the "Risk Factors" and other sections of our public filings with the Securities and Exchange Commission and Canadian securities regulators.

These forward-looking statements are made only as of the date hereof, and Zymeworks Inc. undertakes no obligation to update or revise the forward-looking statements, whether as a result of new information, future events or otherwise, except as required by law.

Questions? Email ir@zymeworks.com

Strategic Importance of Accelerating Early Research & Development (eRnD) Pipeline Efforts

- Zanidatamab partnership with Jazz Pharmaceuticals announced yesterday provides opportunity to reset near-term priorities and spending in early R&D pipeline, including ZW49
- Building a differentiated, early-stage clinical portfolio of ADCs, including ZW49, and multi-specific antibodies in difficult-to-treat cancers would provide strategic optionality for the growth of the business
- Over the next five years, our eRnD operations have capacity and capabilities to bring 5 new novel compounds into clinical studies, including ZW171 and ZW191 by 2024
- Accelerating development broadly provides opportunities for future partnerships and collaborations, and/or retaining unencumbered rights to a broad clinical product portfolio, especially in the US
- Initiatives underway to build early R&D capacity and to accelerate timelines in preclinical and early clinical development
- Processes to select and prioritize best opportunities over time with focus on potential to improve patient outcomes in commercially attractive markets

A Growing Product Candidate Pipeline of Potential Best-in-Class Therapeutics

PROGRAMS COMMERCIAL RIGHTS	TARGET	LATE-DISCOVERY	IND-ENABLING	PHASE 1	PHASE 2	MILESTONE
LEAD PRODUCT CANDIDATES						
Zanidatamab	HER2	Biliary Tract Cancer	FDA Breakthrough Ther	apy designation HERIZON	-BTC-01	RIZON
* Jazz Pharmaceuticals.	HER2	Gastroesophageal Ad	lenocarcinomas HERIZO	DN-GEA-01		RIZON
** 💆 BeiGene	HER2	Breast Cancer				
	HER2	HER2-Expressing Solid	d Tumors			
Zanidatamab Zovodotin (ZW49) HER2 X HER2 Bispecific ADC	HER2	HER2-Expressing Solid	d Tumors			
** BeiGeņe						
PRECLINICAL PROGRAMS						
ZW191 TOPO1i ADC Program	FRα	OVCA, Gynecological, N	SCLC			IND: 2024
ZW171 2+1 CD3-Engager Program	MSLN	Pancreatic, OVCA, CRC				IND: 2024
ZW220 TOPO1i ADC Program	NaPi2b	OVCA, NSCLC				
ZW251 TOPO1i ADC Program	GPC3	Hepatocellular Carcinoma				
4 *Jazz to develop and commercialize across all indications in the United States, Europe, Japan. **BeiGene to develop and commercialize in Asia Pacific countries including China, South Korea, Australia, and New Zealand (excluding Japan).						

Paul Moore, PhD, Chief Scientific Officer

- Leads Zymeworks' Early Research & Development program
- Over 25 years of US-based experience in biologics drug discovery and development in biotechnology research
- Career efforts have led to the discovery and development of a range of FDA-approved and clinical-stage biologics for patients with difficult-to-treat cancers and autoimmune conditions
- Previously served as Vice President, Cell Biology, and Immunology at MacroGenics with additional experience at HGS and Celera
- He has an extensive research record co-authoring over 75 peerreviewed manuscripts and is a named co-inventor on over 50 issued US patents
- Dr. Moore received a Ph.D. in molecular biology from the University of Glasgow. Post-Doctoral work at Roche Institute of Molecular Biology

Generating Multifunctional Antibody Therapeutics for Oncology

Paradigm Shift Towards Next-Generation ADCs and Multifunctional Therapeutics

The future of drug development lies in therapeutics that target diseases with multiple mechanisms of action

Zymeworks Leading the Next Wave of Multifunctional Therapeutics

Zymeworks is at the forefront of this paradigm shift by developing multifunctional therapeutics through its proprietary platforms

Fully-Integrated R&D Pipeline from Target Selection through Pivotal Studies

Employee base with experience to discover, develop and commercialize our novel agents globally with partners and collaborators

Novel Platforms Enable Unique and Differentiated Multifunctional Therapeutics

Platforms Driving the Next Generation of Antibody Based Therapeutics

Azymetric™

Multispecific Antibody Generation

- Biparatopic/Bispecifics
- Trivalent/Trispecifics
- Fc-Fusions
- IgG1-like biophysical, manufacturing, and purification protocols

Drug Conjugate Platforms Fit-For Purpose ADC Candidate Creation

- ZymeLink[™] Auristatin
- ZymeLink[™] Hemiasterlin
- TOPO1i Platform
- Cysteine-Insertion
 Conjugation Platform
- Immune Stimulating (TLR7)

EFECT™ Tailored Immune Function Modulation

 Tailored sets of Fc modifications that can modulate immune cell

recruitment and function

therapeutics

Enhance or eliminate immune

effector function to optimize

ProTECT™

Tumor-Specific Immune Co-stimulation

- Tumor-specific activity via conditional blocking to reduce off-tumor toxicities
- Functional block adds co-stimulation or checkpoint modulation to enhance efficacy

Interplay of Antibody-Based Technologies Enables Differentiation

Complementary Technology Platforms

Clinically Proven: Zymeworks Technology Platforms Yield Therapeutics

And is Further Validated via External Partnerships and Internal Programs

10

Goal: Focus on Cancer Indications with Greatest Unmet Patient Need

ADC and Multispecific Modalities Driving Pipeline

Zymeworks: Leading the Next Wave of BioTherapeutics

Our Early R&D Leadership Team

Nina Weisser, PhD Director Multispecific Antibody Research

14

Thomas Spreter Von Kreudenstein, PhD Director Protein Engineering

Stuart Barnscher Director Preclinical Programs ADC Therapeutic Development

Jamie Rich, PhD Director Technology ADC Therapeutic Development

Agenda

	ΤΟΡΙϹ	PRESENTER
Antibody-Drug Conjugates (ADC)	 Introduction to Zymeworks' Integrated Drug Conjugate Platform & Core Strategy Topoisomerase 1 inhibitor (TOPO1i) ADC Platform ZW191 – IND candidate Additional TOPO1i ADC Assets - ZW251 and ZW220 Future directions for antibody-drug conjugates 	Stuart Barnscher Jamie Rich Stuart Barnscher Jamie R. & Stuart B. Stuart Barnscher
Multispecifics	 Bispecific Landscape and Zymeworks' differential approach ZW171 - IND candidate Trispecific T-cell Engager incorporating co-stimulation (TriTCE-costim) Trispecific T-cell Engager incorporating checkpoint inhibition (TriTCE-CPI) 	Paul Moore Nina Weisser Thomas Spreter Von Kreudenstein Thomas Spreter Von Kreudenstein
15		zyme works

Antibody-Drug Conjugate Therapeutics

Stuart Barnscher Director, Preclinical Programs, ADC Therapeutic Development

The Golden Age of ADCs: 64% of ADC Approvals have Occurred Over the Last 3 Years

Harnessing the Power of ADCs is Not Trivial

Approved ADCs in liquid and solid tumors use a variety of payload mechanisms with a range of potency

Despite recent success, the discontinuation rates are high across multiple payload mechanisms

A Successful ADC Requires the Right Tools, the Right Design, and the Right Team to Execute

Careful selection of target, antibody, linker/conjugation, and payload is required

The Right Tools

There is no one size fits all solution - A toolbox of ADC technologies is required

The Right Team

A fully integrated, multidisciplinary team dedicated to ADC development

Zymeworks' Technologies Enable Fit-For-Purpose Design of ADCs

TECHNOLOGY	FEATURES	HIGHLIGHTS
ZymeLink™ Auristatin Auristatin Drug-linker	 N-acylsulfonamide spacer links auristatin core to cleavable linker Bystander inactive Induce markers of immunogenic cell death (ICD) 	Used in: • Zanidatamab Zovodotin (ZW49) • XB002 (formerly ICON-2) • ATRC-301
ZymeLink™ Hemiasterlin Hemiasterlin Drug-linker	N-acylsulfonamide spacer links hemiasterlin core to linkerBystander active	 MTD ≥ 15 mg/kg in non-human primates
TOPO1i Platform Camptothecin Drug-Linker	 Novel camptothecin payload Bystander active ADC MTD ≥ 30 mg/kg in non-human primates 	Used in pipeline programs: • ZW191 • ZW220 • ZW251
Site-Specific Conjugation Platform Cysteine-Insertion Technology	 Homogeneous conjugation at multiple sites Combines with Azymetric[™] allowing precise control of DAR 	Used in non-core asset: • cMet-ZLA ADC
TLR7 ISAC Platform Immunostimulatory Drug Conjugate	Purine-based scaffold using a peptide cleavable linker	 The Society for Immunotherapy of Cancer (SITC) 2022 abstract accepted

MTD = maximum tolerated dos

20

Eight Years of ADC Research and Development at Zymeworks

Our ADC Discovery Engine is Focused on Developing Pipeline Assets

Building Clinically and Commercially Relevant ADCs Requires Careful Selection of Target, Antibody, Linker/Conjugation, and Payload

	Zymeworks Strategy Today	Rationale	
Target	Focus on targets with evidence of clinical activity in indications of unmet need	Known targets are still actionable with the right technology and the right design	Payloa Focus of
Antibody	Develop optimal ADC antibodies	Antibodies specifically selected for ADC use can increase the likelihood of success	Linker/C
Linker/ Conjugation	Leverage validated peptide- cleavable linkers & stochastic conjugation	Peptide-cleavable linkers are used in 55% of approved ADCs Stochastic conjugation is used in 100% of approved ADCs	Stochastic
Payload	Focus on novel TOPO1i ADC Platform	TOPO1i ADCs are providing meaningful benefits to patients	Target Focus on

Target Focus on targets with evidence of clinical activity

23

Topoisomerase 1 Inhibitor (TOPO1i) ADC Platform

Dr. Jamie Rich Director, Technology, ADC <u>Therapeutic Development</u>

zymeworks

Topoisomerase 1 Inhibitor ADCs are Providing Meaningful Benefit to Patients

Clinical Stage TOPO1i ADC Competition Highlights Two Distinct Strategies

Design of novel payloads enables incorporation of properties tailored for ADC mechanism

26

The Payload is Only One Critical Component of ADC Development

PAYLOAD

Novel camptothecin with moderate potency and strong bystander activity

- Acknowledges complex mechanisms driving TOPO1i ADC action
- Sufficient tolerability to achieve ADC dose > 5 mg/kg

Payload Potency vs. Hydrophobicity

LINKER

Traceless, plasma-stable, cleavable peptide

- Common to majority of approved ADCs
- Compatible with desired bystander activity

CONJUGATION

Thiol-maleimide chemistry

- Stochastic conjugation utilized in all approved ADCs
- Facilitates DAR optimization
- Good balance of stability, safety, and anti-tumor activity

Robust Interrogation Yields Pipeline Ready Topoisomerase ADC Platform

From concept to pipeline:

ZW191 A Potential Best-in-Class ADC Targeting Folate Receptor Alpha

Stuart Barnscher Director, Preclinical Programs, ADC Therapeutic Development

zymeworks

ZW191- Folate Receptor Alpha Topoisomerase-1 Inhibitor ADC

Folate Receptor Alpha is a Relevant and Exploitable Target in Cancer

Structure	Glycosylphosphatidylinositol (GPI)-anchored membrane protein
Normal Tissue Expression	Apical surfaces of tissues including, intestine, lung, Fallopian tube, placenta, choroid plexus. Luminal surface of kidney.
Cancer Tissue Expression	Elevated expression in numerous gynecological cancers including ovarian, and in NSCLC, TNBC.
Ligands	Folate
Function	Internalization of folate via endocytosis.

Expression levels cited from multiple sources including: Senol S et al 2015; Ayada et al. Med Mol Morphol 2018; Oza AM SGO 2021; O'Shannessy DJ et al Oncotarget 2012; Nunez MI et al 2012; D'Angelica et al. Mod Path 2011; Nature Review: Clinical Oncology; Vol. 17 June 2020.

ZW191 Demonstrates Optimal Internalization and Payload Delivery

Superior Internalization Compared to Mirvetuximab

zymeworks

ZW191 Demonstrates Optimal Tumor Spheroid Penetration

ZW191 Exhibits Strong Bystander Activity In Vitro

ZW191 Demonstrates Strong Anti-Tumor Activity in FRα-Expressing Models

ZW191 is Well-Tolerated in Rodent & Non-Human Primates

- Tolerated at 30 mg/kg Following Two IV Doses every 3 Weeks in Non-Human Primates (antigen-binding species)
- ZW191 Demonstrates tolerability up to 200 mg/kg Following Dosing in Mice and Rats (non-antigen binding species)

Two-dose (Q3W) Non-Human Primate Toxicology Study			
Test Article	Dose (mg/kg)	Tolerated?	
Vehicle	N/A	Yes	
ZW191	30	Yes	
	80	No	
Control DXd ADC	30	Yes	
	80	No	

zymeworks

Note: Control DXd ADC contains the same mAb as ZW191 conjugated to DXd

Strong anti-tumor activity and NHP tolerability predict a favorable therapeutic index
FRα-Expressing Cancers Represent a Significant Commercial Opportunity

- Potential best-in-class opportunity in FRα-high ovarian cancer
- Potential first and best-in-class in FRα-high endometrial, NSCLC, TNBC, and FRα-mid/low solid tumors

Expression levels cited from multiple sources including: Senol S et al 2015; Ayada et al. Med Mol Morphol 2018; Oza AM SGO 2021; O'Shannessy DJ et al Oncotarget 2012; Nunez MI et al 2012; D'Angelica et al. Mod Path 2011; Nature Review: Clinical Oncology; Vol. 17 June 2020.

37

ZW191: A Differentiated FRα Targeting ADC

Development underway and on track for 2024 IND

Therapeutic Rationale

 $FR\alpha$ is a clinically validated ADC target in ovarian cancer with good potential in other gynecological and solid tumors.

Topoisomerase-1 inhibition is a clinically validated MOA in ovarian cancer and other solid tumors

Product Differentiation

Compelling internalization, payload delivery, tumor penetration and anti-tumor activity

Novel topoisomerase-1 inhibitor likely to provide a differentiated safety profile compared to MIRV and STRO-002

Opportunity

Potential best-in-class opportunity to improve over MIRV in FR α -high ovarian cancer

Potential first and best-in-class opportunity in FRα-high endometrial, NSCLC, TNBC, and FRα-mid/low solid tumors

Next Milestones

GMP process development underway

GLP toxicology study scheduled

IND 2024

ZW251 A Potential First-in-Class ADC Targeting Glypican-3

Dr. Jamie Rich Director, Technology, ADC Therapeutic Development

zymeworks

ZW251 – A Glypican-3 Topoisomerase-1 Inhibitor ADC

Localization and Expression Profile of GPC3 is Ideal for ADC Targeting

Structure	Glycosylphosphatidylinositol (GPI)-anchored oncofetal membrane protein
Normal Tissue Expression	Expressed in placenta and fetal tissue, such as liver, lung and kidney, but down regulated in adult tissues
Cancer Tissue Expression	High and homogenous expression in >70% of HCC Limited expression in normal adult tissues and non- neoplastic liver lesions
Function	Regulates morphogenesis and growth, possibly via Wnt, hedgehog, fibroblast growth factor, bone morphogenic factor and/or insulin-like growth factor signaling.

Shih T et al. Liver Research, 2020, https://doi.org/10.1016/j.livres.2020.11.003

Hepatocellular Carcinoma

As determined by immunohistochemistry using 1G12 antibody. Adapted from Wang et al. 2008. Arch. Pathol. Lab. Med.

ZW251 Exhibits Desired In Vitro Functional Characteristics

ZW251 Exhibits Strong Anti-Tumor Activity in Multiple Models of Liver Cancer

ZW251 Takeaways

A first-in-class Glypican-3 targeting topoisomerase-1 inhibitor ADC

Therapeutic Rationale

Hepatocellular carcinoma is a disease with limited treatment options and increasing mortality

Glypican-3 is a prevalent and selective marker for hepatocellular carcinoma

Product Differentiation

Novel antibody with strong target binding and internalization

Novel bystander-active topoisomerase-1 inhibitor ADC presents an alternative MOA in hepatocellular carcinoma

Promising anti-tumor activity in preclinical models

Opportunity

Potential first-in-class opportunity for an ADC against hepatocellular carcinoma

Next Milestone

Pilot NHP toxicology study initiated

44

ZW220 A Potential Best-in-Class ADC Targeting NaPi2b

Stuart Barnscher Director, Preclinical Programs, ADC Therapeutic Development

ZW220 – A NaPi2b Topoisomerase-1 Inhibitor ADC

NaPi2b is a Promising and Clinically Validated ADC Target for the Treatment of Solid Tumors

Structure	NaPi2b (SLC34A2) is a multi-transmembrane protein, consisting of 4 extracellular loops
Normal Tissue Expression	Normal NaPi2b expression in epithelial cells of the lung, small intestine, and in mammary gland
Cancer Tissue Expression	Highly expressed in 90% of ovarian cancer, 60-80% of non-small cell lung cancer, and 95% endometrial cancers
Function	NaPi2b functions as a sodium phosphate transporter and contributes to phosphate homeostasis

Front. Mol. Biosci. 2022 Jul; DOI: doi.org/10.3389/fmolb.2022.895911

47

ZW220 Demonstrates Strong Target Binding and Optimal Internalization

ZW220 Exhibits Strong Bystander Activity

49

Bystander Activity in Tumor Cell Co-culture Assay In Vitro Bystander Assay: **Viability of Antigen Negative Cells** Monoculture **Co-culture** 120 -NaPi2b⁻cells NaPi2b⁺ cells NaPi2b⁻ cells EBC-1 **IGROV-1** EBC-1 + 100 0 NaPi2b/cell 1,700,000 NaPi2b/cell 0 NaPi2b/cell EBC-1 in Monoculture EBC-1 in Co-Culture Increasing Killing 80 % Viability 60 40 20 0 т NaPi2b DXd ADC ZW220 No cytotoxicity in Cytotoxicity in NaPi2b-negative DXd Control ADC contains same mAb as ZW220, conjugated to DXd NaPi2b-negative cells cells when in co-culture with NaPi2b-positive cells zymeworks

ZW220 Exhibits Potent Killing in NaPi2b-Expressing Tumor Spheroids

Potent Tumor Spheroid Killing

50

ZW220 Demonstrates Strong Anti-Tumor Activity in NaPi2b-Expressing PDX Models and Favorable PK

ZW220 Takeaways

A potential best-in-class NaPi2b targeting topoisomerase-1 inhibitor ADC

Topoisomerase-1 inhibition is a clinically validated MOA in ovarian cancer and other solid tumors

topoisomerase-1 inhibitor is a unique approach to targeting NaPi2b

Promising anti-tumor activity in preclinical models

NaPi2b-expressing lung carcinomas and other solid tumors

Pilot NHP toxicology study initiated

Zymeworks Preclinical ADC Assets Show Significant Near-Term Potential

What's Next For Zymeworks ADC Pipeline

Stuart Barnscher Director, Preclinical Programs, ADC Therapeutic Development

zymeworks

Zymeworks has the Potential to Develop Additional Innovative Technologies to Advance Novel Fit-for-Purpose ADC Assets

	Zymeworks Strategy Tomorrow	Rationale	
Target	Explore novel targets	Addressing difficult to treat cancers may require exploring targets with less validation	Payload Novel MoAs
Antibody	Leverage bispecific and biparatopic know-how to develop optimal ADC antibodies	Opportunity to improve internalization, specificity, and lower the target expression threshold	Linker Novel linkers payload prop
Linker/ Conjugation	Devise novel linkers to complement payload properties	Linker design should be dictated by payload potency, solubility, metabolism, and mechanism	
Payload	Develop novel payloads by adapting MoAs with clinical validation to novel ADC application	More opportunity to match disease and target biology with payload mechanism	Target Explore novel
	ADC application	mechanism	

55

Multispecific Antibody Therapeutics (MSAT)

Dr. Paul Moore Dr. Nina Weisser Dr. Thomas Spreter Von Kreudenstein

Broad Use of Bispecifics Across Therapeutic Areas, with an Accelerating Pace of Approvals

Zymeworks' Technologies Enable Fit-For-Purpose Design of Multi-specifics

TECHNOLOGY	FEATURES	HIGHLIGHTS
Azymetric[™] HetFc and HetFab heterodimeric IgG	 Industry-leading heterodimeric IgG solution Enabling technology for bispecific and multispecific therapeutics Superior stability, purity and modularity of Azymetric[™] allows HTP screening and development of multispecifics 	 Clinically validated technology Multiple pharma partners employing
Biparatopic mAbs	 Enhanced receptor cross-linking via binding of independent epitopes 	• Zanidatamab, ZW49
T cell Engagers (TCE)	 1+1 T cell engager applications 2+1 T cell engager engineered to maximize therapeutic window ZW171 (2024 IND) 	
TriTCEs Next Gen trispecific T cell engagers	 Novel next gen trispecific designed to overcome TCE limitations TriTCE-costim with potential to re-invigorate 'cold' tumors TriTCE-CPI (checkpoint inhibition) to overcome suppressive TME 	 Candidate selection ongoing
ProTECTTM Tumor-specific immune stimulation	 Tumor-specific activity via conditional blocking to reduce off-tumor toxicities Functional block adds checkpoint modulation to enhance efficacy 	 Widens scope of possible tumor targets Interfaces with TriTCE, Antibody or ADC
Cytokine Fc-fusions Tumor-specific cytokine activation	 Novel cytokine engineering approach combining reduced potency and tumor specificity Can be combined or integrated with other ZW molecules 	 Non-core asset: Tumor restricted IL-12 (AACR 2021)

zymeworks

10+ Years of Protein Engineering and Bispecific Development at Zymeworks

Partnerships and Zymeworks' Milestones using Azymetric[™] or EFECT[™] Platforms

Zymeworks 2022 and Beyond: Building Multispecific Assets to Address Biological Challenges in Indications with High Unmet Medical Need

Engineering and Optimizing the Design of T Cell Engagers is Not Trivial

Core Competency of Protein Engineering & Flexibility of Azymetric[™] Platform Enables Screening of Multiple Parameters in Parallel

- Core competency of Protein Engineering harnessed to engineer and optimize multiple parameters in silico
- Flexibility of Azymetric[™] Platform enabled extensive screening of antibodies based on valency, geometry, and affinity

Blinatumomab Provided Initial POC for TCE's Clinical Utility

Clinical Benefit Shown vs. Chemo - But Limited Improvement in Durable Survival

Kantarjian H et al NEJM 2017

63

Challenges Remain: Gen 1 TCE Limited by Narrow Therapeutic Window & Solid Tumors Present Obstacles not Found in Blood Cancers

Zymeworks Multispecific T Cell Engager Strategy: Utilizing Azymetric[™] Advantage to Build Differentiated & Next Generation T Cell Engagers

Biological Problem

- 1 Narrow therapeutic window and toxicity due to CRS associated with Gen 1 TCE in solid tumors
- 2 Limited T cell intratumoral availability and T cell anergy in solid tumors
- 3 Immunosuppressive tumor microenvironment limiting T cell responses in solid tumors

Zymeworks Solution

2+1 T Cell Engager (ZW171)

Mitigate CRS with low affinity T cell binding and enhanced efficacy and selectivity with aviditydriven tumor antigen binding

TriTCE Co-stim

Increase T cell fitness, activation and proliferation via tumor-dependent T cell co-stimulation

TriTCE CPI

Increase T cell responses through simultaneous checkpoint blockade and avidity-driven binding

ZW171 2+1 anti-MSLNxCD3 Potential Best-in-Class Antibody for MSLN

Dr. Nina Weisser Director, Multispecific Antibody Research

zymeworks

ZW171 Takeaways

Industry-leading Platform for Generating Bispecific and Multispecific Antibodies:

Mesothelin is Expressed in Many Tumor Types and has an Ideal Profile for Bispecific Immune Cell Targeting

Structure	Glycosylphosphatidylinositol (GPI)-anchored membrane glycoprotein
Normal Tissue Expression	Restricted to the mesothelial cells of pleura, pericardium, and peritoneum
Cancer Tissue Expression	Elevated surface expression in many solid tumors, including mesothelioma, pancreatic, ovarian, lung adenocarcinoma, cholangiocarcinoma, and triple negative breast cancer
Function	Binds MUC16 and may play a role in cell adhesion, tumor progression, metastasis, chemo-resistance and formation of cancer-associated fibroblasts that induce immunosuppressive regulatory T cell (Treg) formation
Clinical	Clinically validated target with recent data showing response (20% ORR) in cholangiocarcinoma , mesothelioma and ovarian cancers with autologous T cell therapy (gavo-cel)

68

ZW171 Identified via Extensive Engineering and Screening

- Core competency of Protein Engineering harnessed to engineer and optimize multiple parameters *in silico*
- Flexibility of Azymetric[™] Platform enabled extensive screening of antibodies based on valency, geometry, and affinity

Anti-CD3 Paratope Engineered to Widen the Therapeutic Window

First-gen TCEs based on SP34 and OKT3 paratopes have high-affinity CD3 binding, and dose-limiting toxicity related to cytokine release syndrome (CRS)

Data generated with MSLNxCD3 bispecifics; aRSV or HAxCD3 used as negative controls

ZW anti-CD3_1 paratope has **low affinity** and **reduced** CD3 binding, **low** cytokine release and **potent** tumor cell lysis to maintain anti-tumor activity and avoid dose-limiting toxicity related to CRS

Zymeworks Anti-CD3 Paratope Engages CD3 at a Different Epitope than Gen 1 Anti-CD3 Antibodies

First-gen TCEs based on SP34 paratopes have high-affinity CD3 binding, and dose-limiting toxicity related to cytokine release syndrome (CRS)

Distinct binding geometry to CD3 may provide more optimized engagement and biology for MSLN and other tumor targets

Cross-reactive to cynomolgus CD3

Lead Candidate Confirmed Through Format and Affinity Screening In vivo

Anti-MSLN Paratope Affinity is Critical

2 + 1 Geometry is Critical

zymeworks

In vivo anti-tumor activity evaluated with established tumor models that have reduced sensitivity compared to co-implantation (tumor + PBMC) models

72

OVCAR-3 tumor fragments were engrafted subcutaneously in NOG mice. After tumors reached 100-200 mm3, mice were humanized with donor PBMC (3 donors) then treated 2QW x4 with test article. HuPBMC = human peripheral blood mononuclear cells
ZW171: Engineered for Enhanced Anti-tumor Activity & Safety

ZW171 Engages High MLSN-Expressing Cells But Not Low MSLN-Expressing Cells, Mitigating the Risk of On-Target Off-Tumor Toxicities

ZW171 Exhibits TAA-Dependent Cytotoxicity in MSLN-Expressing Lung, Ovarian, Colon and Mesothelioma Cancer Cell Lines

Human pan T cells and tumor cells were CO-Cultured at an effector-to-target ratio of 5:1 in the presence of ZW171 or negative control for 72 hours.

ZW171 Mediates MSLN-Dependent Cytokine Release and T cell Proliferation, Mitigating the Risk of Peripheral T cell Activation and CRS

No cytokine production or T cell proliferation in the absence of MSLN-expressing tumor cells

ZW171 Mediates Greater In Vivo Anti-Tumor Activity Compared to Benchmark in an Established MSLN^{High}-Expressing Ovarian Cancer Model

Human pan T cells and OVCAR3 cells were co-cultured at an effector-to-target ratio of 5:1 in the presence of ZW171 or HPN triTAC for 72 hours.

OVCAR-3 tumor fragments were engrafted subcutaneously in NOG mice. After tumors reached 100-200 mm³, mice were humanized with donor PBMC (3 donors) and dosed i.v. QW x4 with ZW171 or i.p. daily x 18 with HPN triTAC. Negative control is antihemagglutinin x CD3 bispecific.

ZW171 Mediates Greater In Vivo Anti-Tumor Activity Compared to Benchmark in an Established MSLN^{mid}-Expressing Colon Cancer Model

78

NPG mice were engrafted with HCT116 cells and human PBMC (2 donors) intraperitoneally. When tumors reached 100-200 mm³, dosed i.v. QW x4 with ZW171 or i.p. daily x 18 with HPN triTAC. Serum exposure concentrations and matched exposure doses confirmed by PK analysis. Negative control is anti-hemagglutinin x CD3 bispecific.

ZW171 Commercial Opportunity

79

 Potential first and best-in-class treatment for MSLN+ pancreatic, ovarian, NSCLC, TNBC, mesothelioma and other MSLN-expressing cancers

Modified from Morello et al Cancer Discovery; Vol. 6 Feb 2016 and Inaguma et al Oncotarget; Vol 8 Apr 2017

ZW171 Summary

80

Widening the therapeutic window of bispecific T cell engagers

zymeworks

Next Generation T-cell Engagers Costimulatory Trispecific T Cell Engagers

Dr. Thomas Spreter von Kreudenstein Director, Protein Engineering Challenges Remain: Gen 1 TCE Limited by Narrow Therapeutic Window & Solid Tumors Present Obstacles Not Found in Blood Cancers

Emerging Limitations of Bispecific T Cell Engagers: Lack of Co-stimulation Limits *Efficacy* and *Durability* of Responses in Solid Tumors

T cell activation and sustained proliferation is regulated by 'Signal 1' and 'Signal 2'

- Activation by 'Signal 1' and co-stimulation by 'Signal 2' are required for optimal activation and sustained proliferation of T cells
- Lack of expression of co-stimulatory ligands (B7) on solid tumors limits activity and durability of bispecific T cell engager anti-tumor responses
- **Co-stimulatory trispecific T cell engagers have the potential** to provide more durable responses and to re-invigorate 'cold' tumors with lower T cell infiltration

Acuto & Michel, Nature Immunol Rev (2003) Feucht et al., Oncotarget (2016)

Zymeworks Trispecific Co-Stimulatory T Cell Engagers: Overcoming Lack of *Efficacy* and *Durability* of Responses in Solid Tumors by Optimization of Signal 1 and 2

Zymeworks' Conventional CD28 Agonist is Engineered with a Broad Range of Affinities to Avoid Potential Toxicity Issues of Traditional CD28 Super-agonists

- Conventional anti-CD28 agonist with no super-agonist activity
- Potentially less risk of CD28 mediated toxicities

85

- Library of anti-CD28 affinities from medium to low
- Flexibility of stable Fab and scFv format to test different trispecific T cell engager geometries

Integrated Screening of Multivalent Geometries and Affinities to Select Best-in-Class Trispecific T cell Engagers with Optimized CD3 and CD28 Activity

Trispecifics Exhibit Improved Potency & Maximum Cytotoxicity Over Bispecifics with Long term Co-culture at Low T cell to Tumor Cell Ratios

- Developed long term co-cultures at low T cell to tumor cell (E:T) ratios to better represent conditions in solid tumors
- Activity in long term low E:T cultures differentiates trispecifics vs bispecific benchmarks

Costimulatory Trispecifics Exhibit Strict Target-Dependent Activation of T Cells Suggesting No Activation of T Cells in the Periphery

Next Gen Costimulatory Trispecific T cell Engager (TriTCE-costim)

Addressing lack of activity of bispecific TCEs in solid tumors with low T cell infiltration

solid tumors is limited by **low numbers** of intratumoral T cells and T cell anergy

Next Gen TriTCE-costim can provide increased T cell fitness, activation and proliferation via tumor-dependent T cell co-stimulation **Novel approach** of **modular geometry and avidity screening** of trispecifics to optimize T cell activation by Signal 1 and Signal 2

TriTCE-costim show superior in vitro activity to bispecific benchmarks at low effector to target ratios

TriTCE-costim show no activation of T cells without presence of tumor cells

TriTCE-costim may provide more durable responses in solid tumors and show superior activity in 'cold' tumors with low T cell counts

Next Milestone

Lead molecule selection

89

Next Generation T-cell Engagers

Trispecific T Cell Engager With Checkpoint Inhibition

Dr. Thomas Spreter von Kreudenstein Director, Protein Engineering

Challenges Remain: Gen 1 TCE Limited by Narrow Therapeutic Window & Solid Tumors Present Obstacles Not Found in Blood Cancers

Natural T Cell Activation is Regulated by PD-1/PD-L1 Expression and Activity of TCEs is Limited by PD-1/PD-L1 Checkpoint Inhibition in Tumor Microenvironment

- PD-1/PD-L1 upregulation is a natural mechanism to reduce T cell activation and prevent autoimmune reactions
- In tumors, PD-1/PD-L1 upregulation impairs T cells mediated killing of tumor cells
- TCE activity induces rapid upregulation of PD-1/PD-L1 and limits activity of TCE
- High levels of PD-1+ exhausted, dysfunctional T cells limit TCE activity

Trispecific T Cell Engager with Checkpoint Inhibition (TriTCE-CPI) to Address Limited Activity of T Cell Engagers due to PD-1/PD-L1 Upregulation in Tumor Microenvironment

Zymeworks approach of differentiated **TriTCE CPI (checkpoint inhibition)** utilizing PD-1/PD-L1 inhibition and enhanced efficacy of T cell redirection

- Enhanced activity of trispecific driven by dual MOA of PD-1/PD-L1 blockade in synapse and increased avidity
- Dual MOA has potential for enhanced activity of trispecific compared to combination therapy
- Building on learnings and engineering expertise from ProTECT[™]-TCE

Natural PD-1 Domain Engineered for Enhanced PD-L1 Affinity is Used to Design Differentiated Trispecific T Cell Engagers with Varied Format

Screening of Trispecific Formats to Select Best-in-Class Multispecific Antibody

Format #1 120 Screening of panel of TriTCE-CPI formats with different geometries to • 100optimize CPI and avidity 80 Lead trispecific formats show >100x enhanced potency over format-• % Survival 60 matched bispecific control 40 **T Cell-Dependent Cytotoxicity** TW Format 1 20 Bispecific control 120-Assay system 10⁻³ 10⁻² 10⁻¹ 100-10-4 10⁰ 10-5 10¹ 10² 10³ Cytoxicity Sample Concentration (pM) 80-% Survival 60-Format #2 120-Tumor cell 40-100 20-T-cell 80 Survival 0+ 60-10-4 10⁻³ 10⁻² 10⁻¹ 10⁰ 10¹ 10² 10³ 104 Sample Concentration (pM) % 40-ZW Format 2 ★ ZW Format 1 - ZW Format 6 **Bispecific control** 20 🛧 ZW Format 2 -O- ZW Format 7 -V- ZW Format 8 -O- ZW Format 3 0-10-4 10¹ 10⁻³ 10-2 10-1 10⁰ 10² -D- ZW Format 4 -O- ZW Format 9 10-5 Sample Concentration (pM) --- Competitor Benchmark -> ZW Format 5

Trispecific T Cell Engagers Show Checkpoint Blockade Advantage Over α PD-L1 Combination Treatment Supporting Dual MOA of Trispecific

TriTCE-CPI Shows Superior Binding to Exhausted T Cells than Benchmark CD3 Bispecific

- As T cells become activated and exhausted, they express PD-L1 and downregulate CD3
- Trispecifics can bind to PD-L1 on exhausted T cells resulting in an avidity advantage

TriTCE-CPI Shows Superior Activity to Benchmark with Exhausted T Cells

• Trispecific shows increased potency compared to bispecific and bispecific + atezolizumab combination when exhausted T cells are used as effector cells

T Cell-Dependent Cytotoxicity

Improved Potency of TriTCE-CPI Over Bispecific Control Across Multiple Tumor Cell Lines that have Varying Level of TAA and PD-L1 Expression

TriTCE-CPI is Efficacious In Vivo and Shows Advantage Over α PD-L1 Combination Treatment

100

Next Gen Trispecific T cell Engagers with Checkpoint Inhibition (TriTCE-CPI)

Early Research and Development: Integrated Pipeline of ADCs and Multispecifics

Dr. Paul Moore Chief Scientific Officer

zymeworks

Focused R&D Strategy to Drive Next Wave of Development in Difficult-to-Treat Cancers

103

zymeworks

Optionality with Two Design with Complementary Select Tumor Indications Foundational Fit-for-Purpose Technology Platforms with High Unmet Need: **Modalities** ZymeLink™ TOPO1i Auristatin Platform Hemiasterlin **Antibody-Drug Conjugates** Site Specific ISAC Customization: Conjugation & TLR7 Antibody properties & format • **Examples**: Payload Pancreatic Linker/conjugation **ADCs** Ovarian DAR ٠ **Multispecifics** NSCLC Liver **Multispecifics** Tumor Mesothelioma Bispecific Achieve: Restricted **Biparatopic** Activation Precision targeting through CRC multivalency Trivalent **Fc-fusions** Multiple MoA in single molecule • Trispecific Synergistic biology • zymeworks 104

ADC and Multispecific Modalities Driving Future Product Candidates

Zymeworks' Integrated Early Research Oncology Pipeline

IND Candidates

ZW-191: FRa-TOPOi

- High internalizing mAb
- Proprietary Topo-based payload
- Ovarian Cancer, NSCLC, TNBC
 - FRa high and mid expression

ZW-171: 2 x 1 MSLN x CD3

- Avidity driven MSLN engagement
- Affinity modulated CD3
- Pancreatic Cancer, Mesothelioma

TOPOi Conjugates

- ZW251: GPC3
- ZW220: NaPi2b
- TAA* (Biparatopic)

Trispecific T-cell Engagers

- Incorporate co-stim (aCD28)*
- Incorporate CPI (PD-1)*
- ProTECT T-cell Engager*

*Tumor Associated Antigens Selected

Research Engine Alternative Payload Strategies Novel target selection based on disease indication (hard to treat cancers) Dual targets/pathways to enable gated activation and increase Simultaneous tumor cell lysis and reversal of immune suppression

Optimal Effector Cell recruitment

Integrated Platforms Drive Growing Product Candidate Pipeline

Future Partnering Strategy Focused on Deriving Value From Product Candidates and Novel Platform Capabilities

zymeworks

- Strategy to partner future product candidates in ex-US markets prior to registrational studies (inc. ZW49)
- Additional partnerships to generate further product candidates in both ADC and MSAT platforms

107

Early-stage collaborations to access technologies/programs that are complementary to in-house capabilities

Zymeworks Moving Forward "5 by 5"

5 new Zymeworks developed programs in clinic in 5 years 5 Zymeworks developed programs in clinic by 2025

Key Takeaways

Focused Development

Renewed focus on multi-specific and ADC therapeutic research areas to generate novel therapeutics

Pipeline Expansion

Goal of generating **five** Zymeworks developed programs in the clinic **by 2025**

Partnership Strategy

Strategy to prioritize partnerships for future product candidates in ex-US markets prior to registrational studies

Ø

Leading the wave of next generation biotherapeutics

109

Email **ir@zymeworks.com** with questions

zyme

zymeworks

in

Y